首页> 外文OA文献 >Estimating Surface Carbon Fluxes Based on a Local Ensemble Transform Kalman Filter with a Short Assimilation Window and a Long Observation Window
【2h】

Estimating Surface Carbon Fluxes Based on a Local Ensemble Transform Kalman Filter with a Short Assimilation Window and a Long Observation Window

机译:基于具有短同化窗和长观察窗的局部集成变换卡尔曼滤波器的表面碳通量估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We developed a Carbon data assimilation system to estimate the surface carbon fluxes using the Local Ensemble Transform Kalman Filter and atmospheric transfer model of GEOS-Chem driven by the MERRA-1 reanalysis of the meteorological fields based on the Goddard Earth Observing System Model, Version 5 (GEOS-5). This assimilation system is inspired by the method of Kang et al. [2011, 2012], who estimated the surface carbon fluxes in an Observing System Simulation Experiment (OSSE) mode, as evolving parameters in the assimilation of the atmospheric CO2, using a short assimilation window of 6 hours. They included the assimilation of the standard meteorological variables, so that the ensemble provided a measure of the uncertainty in the CO2 transport. After introducing new techniques such as , and increased observation weights near the surface, they obtained accurate carbon fluxes at grid point resolution. We developed a new version of the LETKF related to the (RIP) method used to accelerate the spin-up of EnKF data assimilation [Kalnay and Yang, 2010; Wang et al., 2013, Yang et al., 2014]. Like RIP, the new assimilation system uses the algorithm for the LETKF [Kalnay et al., 2007b], which allows shifting at no cost the Kalman Filter solution forward or backward within an assimilation window. In the new scheme a long (e.g., 7-days or longer) is used to create an LETKF ensemble at 7-days. Then, the RIP smoother is used to obtain an accurate final analysis at 1-day. This analysis has the advantage of being based on a short assimilation window, which makes it more accurate, and of having been exposed to the future 7-days observations, which accelerates the spin up. The assimilation and observation windows are then shifted forward by one day, and the process is repeated. This reduces significantly the analysis error, suggesting that this method could be used in other data assimilation problems.
机译:我们开发了一个碳数据同化系统,使用本地集合变换卡尔曼滤波器和GEOS-Chem的大气传输模型来估算表面碳通量,该模型由基于戈达德地球观测系统模型(版本5)的MERRA-1气象领域的再分析驱动(GEOS-5)。这种同化系统是受Kang等人方法启发的。 [2011年,2012年],他以观测系统模拟实验(OSSE)模式估算了表面碳通量,将其作为大气CO2吸收过程中的演变参数,使用了6小时的短时间吸收窗口。它们包括对标准气象变量的吸收,因此该集合提供了对CO2输送不确定性的度量。在引入新技术(例如)和增加地面附近的观测权重之后,他们以网格点分辨率获得了准确的碳通量。我们开发了与(RIP)方法相关的LETKF的新版本,该方法用于加速EnKF数据同化的提速[Kalnay and Yang,2010; Wang等,2013,Yang等,2014]。像RIP一样,新的同化系统使用LETKF的算法[Kalnay et al。,2007b],该算法允许在同化窗口内无偿地向前或向后移动Kalman滤波器解。在新方案中,使用很长的时间(例如7天或更长时间)来创建7天的LETKF集成。然后,使用RIP平滑器在1天时获得准确的最终分析结果。这种分析的优点是基于一个较短的同化窗口,这使得它更准确,并且可以暴露于未来的7天观测,从而加速了旋转。然后将同化和观察窗口向前移动一天,然后重复该过程。这显着降低了分析误差,表明该方法可用于其他数据同化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号